2 research outputs found

    A noise bifurcation architecture for linear additive physical functions

    Get PDF
    Physical Unclonable Functions (PUFs) allow a silicon device to be authenticated based on its manufacturing variations using challenge/response evaluations. Popular realizations use linear additive functions as building blocks. Security is scaled up using non-linear mixing (e.g., adding XORs). Because the responses are physically derived and thus noisy, the resulting explosion in noise impacts both the adversary (which is desirable) as well as the verifier (which is undesirable). We present the first architecture for linear additive physical functions where the noise seen by the adversary and the noise seen by the verifier are bifurcated by using a randomized decimation technique and a novel response recovery method at an authentication verification server. We allow the adversary's noise η[subscript a] → 0.50 while keeping the verifier's noise η[subscript v] constant, using a parameter-based authentication modality that does not require explicit challenge/response pair storage at the server. We present supporting data using 28nm FPGA PUF noise results as well as machine learning attack results. We demonstrate that our architecture can also withstand recent side-channel attacks that filter the noise (to clean up training challenge/response labels) prior to machine learning

    Performance Metrics and Empirical Results of a PUF Cryptographic Key Generation ASIC

    Get PDF
    We describe a PUF design with integrated error correction that is robust to various layout implementations and achieves excellent and consistent results in each of the following four areas: Randomness, Uniqueness, Bias and Stability. 133 PUF devices in 0.13 μm technology encompassing seven circuit layout implementations were tested. The PUF-based key generation design achieved less than 0.58 ppm failure rates with 50%+ stability safety margin. 1.75M error correction blocks ran error-free under worst-case V/T corners (±10% V, 125°C/-65°C) and under voltage extremes of ±20% V. All PUF devices demonstrated excellent NIST-random behavior (99 cumulative percentile), a criterion used to qualify random sources for use as keying material for cryptographic-grade applications
    corecore